Indian Society for Heat and Mass Transfer
DIGITAL LIBRARY

Library Subscription: Guest
Home Archives Officers Future meetings Indian Society for Heat and Mass Transfer

NODAL INTEGRAL METHOD FOR COMPLEX GEOMTRIES USING HIGHER ORDER ELEMENTS

Rishabh Prakash Sharma
Thapar University, Patiala, Punjab, India

Neeraj Kumar
Thapar University, Patiala, Punjab, India

DOI: 10.1615/IHMTC-2017.3130
pages 2241-2248

Abstract

A novel numerical scheme utilizing f our noded linear and nine noded non-linear quadrilateral elements is developed to solve the governing fluid flow and heat transfer equations in complex domains. Non-linear elements are used in discretization of boundary regions and linear-elements are used for inner domain. Lagrange interpolation functions are used for bijective mapping of these type of elements to corresponding square computational elements. Implementation of Dirichlet boundary conditions are straight forward, while for Neumann and mixed type of boundary conditions, a generic scheme is developed by piecewise linearization of quadratic surface of non-linear elements. C1 type continuity condition is imposed at the interfaces of adjacent elements. Numerical results are compared with analytical solutions for both Diffusion and Advection-Diffusion equations. L2 norm errors are also calculated for quantitative analysis of developed numerical schemes. The results show that the efficient mapping of curved surface with quadratic elements improves the accuracy of NIM schemes.

Purchase $25.00 Check subscription Publication Ethics and Malpractice Recommend to my Librarian Bookmark this Page