图书馆订购 Guest

ISSN Online: 2688-7231

ISBN Online: 978-1-56700-524-0

Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India
December, 17-20, 2021, IIT Madras, Chennai, India

Nanobubble Formation in a Viscous Liquid due to Rotation of a Nanoparticle - a Molecular Dynamics Study

Get access (open in a dialog) DOI: 10.1615/IHMTC-2021.1360
pages 903-908

摘要

The formation and growth of nanobubbles around a rotating nanoparticle (NP) suspended in a bulk liquid is studied using LAMMPS molecular dynamics (MD) package. Initially, the nanoparticle and the surrounding liquid are at a temperature lower than the saturation temperature of the bulk liquid at atmospheric pressure. Due to the rotational motion of the NP, there is a transfer of energy from the nanoparticle to the surrounding liquid. Consequently, the temperature of the bulk liquid rises. Argon is used as the bulk liquid, and Cobalt as the NP for all the simulations performed. The interactions between them, as well as with the two pistons, are modeled using Lennard-Jones potential. The effect of the NP diameter, wettability of the NP surface, and frequency of rotation of the NP on the bubble formation and growth is studied. We observe that with the increase in the nanoparticle surface wettability, bubble formation takes place faster for 2 nm and 4 nm diameter nanoparticles. For 3 nm diameter nanoparticles, initially, bubble volume increases rapidly with the increase in the surface wettability, but then it slows down when wettability is further increased. If the nanoparticle diameter is increased, keeping the surface wettability and frequency of rotation constant, bubbles form and grow faster due to the increased centrifugal force on the neighboring argon atoms. With the increase in the frequency of rotation, bubbles grow faster up to a particular value of frequency, but after that, an increase in frequency causes slower bubble growth.