用户登录 购物车
图书馆订购 Guest
主页 旧刊 有关人员 未来大会

ISSN Online: 2688-7231

ISBN Online: 978-1-56700-524-0

Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India
December, 17-20, 2021, IIT Madras, Chennai, India

Physics-Informed Neural Network: Application to spacecraft thermal modelling

Get access DOI: 10.1615/IHMTC-2021.800
pages 535-538

摘要

Physics-informed neural networks (PINN) are a popular paradigm of scientific machine learning which incorporate the domain knowledge in the form of differential equations into the loss function of the neural network representing the solution. Though this approach has been extensively studied for solving a variety of differential equations including heat equation, the use of PINN for system level heat transfer modelling is not explored much. In the present work, taking spacecraft thermal modelling as an example, use of PINN for modelling coupled, multi-mode heat transfer phenomenon at the system level is studied. A simplified compact thermal model for a spacecraft sub-system consisting of fewer nodes (e.g. heat source, conductive-convective heat flow path, radiative sink) is developed. In present study, Tensorflow, the popular open-source machine learning framework is utilized. Results are validated using an equivalent thermal mathematical model developed on commercial software NX/TMG. Validation is done for both steady and transient load profiles. A good agreement of ±2 °C is obtained between PINN and NX/TMG.
主页 旧刊 有关人员 未来大会 中文 English Русский Português 帮助 联系我们 返回至ISHMT