カスタマーログイン ショッピングカート
ライブラリ登録: Guest
ホーム アーカイブ 役員 今後の会合

ISSN オンライン: 2688-7231

ISBN 印刷: 978-1-56700-497-7 (Flash Drive)

ISBN オンライン: 978-1-56700-496-0

Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019)
December, 28-31, 2019, IIT Roorkee, Roorkee, India

CFD Analysis of Latent Heat Energy Storage System with Different Geometric Configurations and Flow Conditions

Get access DOI: 10.1615/IHMTC-2019.420
pages 245-250

要約

The Latent heat storage technology is being used worldwide to bridge the gap between supply and demand of energy. The material store energy during the charging process (melting) and releases energy during the discharging process (solidification). In spite of having various advantages such as high storage energy density, it suffers from the fact that most Phase Change Materials (PCMs) commonly used have a very low thermal conductivity, hence, very slow charging /discharging times. In the current work, a shell and tube type heat exchanger with phase change material on the shell side and heat transfer fluid on the tube side are considered. The effect of flow rate and inlet temperature of heat transfer fluid on melting and solidification times are investigated with single and double pass (counter and parallel) arrangements of Heat Transfer Fluid (HTF). The major difficulty encountered in the melting of the PCM is the accumulation of solid (unmelted) part at the bottom during the charging process, while the liquid part remains at the top during the discharging process, which decreases the efficiency of the system to quite a great extent. In this study, an attempt has been made to improve the efficiency of the system by considering two configurations (double and triple tube) of the shell and tube heat exchanger and it is found that the latter case has better performance.
ホーム アーカイブ 役員 今後の会合 English Русский 中文 Português ヘルプ 問合せ先 ISHMTへ戻る